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We report a Brownian dynamics simulation study of the structure and dynamics of superparamagnetic
colloids subject to external substrate potentials and confined in narrow channels. Our study is motivated by the
importance of phenomena like commensurable-incommensurable phase transitions, anomalous diffusion, and
stochastic activation processes that are closely related to the system under investigation. We focus mainly on
the role of the substrate in the order-disorder mechanisms that lead to a rich variety of commensurate and
incommensurate phases, as well as its effect on the single-file diffusion in interacting systems and the depin-
ning transition in one dimension.
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I. INTRODUCTION

The study of static and dynamic properties of interacting
colloidal particles in the presence of external fields is an
interesting and complex subject that has grown in the last
few years. This subject is increasingly important because a
quantitative understanding of colloidal dispersions under ex-
ternal fields allows elucidation of the physical properties of
other complex systems that are of industrial, chemical, and
biological relevance. For example, colloidal particles under
external laser fields have highlighted the importance of the
ordering and dynamics of atomic systems on surfaces, such
as atomic monolayers �1,2�, and the relevance of stochastic
resonance in nonlinear bistable systems �3�. For a review of
colloids under external control see, for instance, Ref. �4�.

During the last few decades, the study of dynamical prop-
erties in quasi-one dimensional �quasi-1D� channels has be-
come a fascinating topic from both theoretical and experi-
mental points of view. This is due to the fact that the
dynamics of fluids in restricted geometries is very different
from that in the bulk. For example, when the channel is so
narrow that mutual passage is not possible, a correlation be-
tween subsequent displacements emerges, so that the motion
of individual particles requires the collective motion of many
other particles in the same direction; this leads to a subdif-
fusive process characterized by an anomalous mean-square
displacement of the form limt�� W�t�=2F�t �6�, where F is
the so-called single-file diffusion �SFD� mobility factor. Par-
ticularly, interacting particles in narrow channels and subject
to external fields represent an interesting model system to
study several topics, such as the basis of commensurate-
incommensurate transitions, the SFD in the inhomogeneous
case, and the conditions for depinning in 1D, as well as the
study of nonlinear dynamics in systems with anharmonic in-
teractions �7�.

In recent years, experimental corroboration of SFD has
been performed successfully by several research groups
�8–10�. In particular, Lutz et al. �11,12� created 1D circular
channels by means of scanning optical tweezers in order to
avoid the presence of lateral confinement walls. This experi-

mental setup allows a reduction of the dissipative hydrody-
namic interactions, thus leading to higher particle mobility.
This technique has elucidated the typical diffusion of
charged colloids in a free single file—i.e., in the absence of a
substrate.

Nowadays, due to several experimental and theoretical
studies, the diffusion on homogeneous substrates is now un-
derstood, but the dynamical properties on corrugated sur-
faces are still less known, although the latter case is more
relevant for modeling atomic surfaces. Furthermore, there is
no experimental evidence of the way in which a modulated
substrate affects the physical properties of interacting par-
ticles along the channel. Nonetheless, from a simulation
point of view, the mobility of noninteracting pointlike par-
ticles on periodic substrates �13� and the diffusion of charged
colloids under modulated sinusoidal substrates �14� have
shown that the presence of the substrate does not invalidate
the diffusive behavior W�t���t.

Although most experimental results for SFD have been
performed with charged colloids, the study of the same phe-
nomenon in similar systems permits one to gain a better
understanding of the relevant physical processes that can
take place, such as anomalous diffusion, hopping rate of par-
ticles in periodic potentials, and depinning transition, among
others. In the present work, motivated by whether the rich
scenario of novel phases and dynamical processes are depen-
dent of the kind of interaction potential, we extend our
previous study for charged colloids �14� to the case of
superparamagnetic colloids. We basically study the
commensurate-incommensurate phases and the subdiffusive
process of colloids with dipolelike interactions in narrow
corrugated channels over an extended range of substrate
strengths. We should mention that our results can be corrobo-
rated in experiments of colloidal particles confined in 1D
optical channels and subject to periodic light-forces �11,12�.
The latter ones are commonly used for modeling periodic
substrates �2�.

The paper is organized as follows. In Sec. II we describe
the interaction potential between colloids, the Brownian
simulation algorithm, and the main quantities to characterize
the structure and dynamics of the system. In Sec. III, the
substrate-free case is analyzed in terms of the potential
strength. In Sec. IV, the pair distribution function and the*ramoncp@fisica.ugto.mx
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mean-square displacement are studied as functions of the
substrate parameters. Moreover, the depinning transition is
discussed through the loss of correlation observed in the sys-
tem structure and the enhancement in the particle mobility
factor. In addition, the Frenkel-Kontorova model �15,16� is
briefly summarized in order to compare the resulting phases
near to the zero temperature with those at finite temperature.
Finally, the paper is closed with a section of conclusions.

II. MODEL SYSTEM AND SIMULATION
TECHNIQUES

A. Interaction between colloidal particles

A striking advantage of colloidal dispersions lies in the
fact that they can be used as model systems for soft con-
densed matter and inherent properties can be studied simul-
taneously by using three different complementary methods:
namely, experiments, theory, and computer simulations. In
particular, superparamagnetic colloids at the air-water inter-
face have served as excellent models to investigate funda-
mental properties that are related to the role of hydrodynam-
ics and melting transition, as well as the elastic behavior and
the phonon band structure in two-dimensional crystals
�17,18�. In such an experimental model, an external and con-
stant magnetic field is applied in the perpendicular direction
of the interface. This leads to a long-range magnetic dipole-
dipole interaction between colloids of the form �17�

�u�r� =
�

r3 , �1�

where r is the separation between two colloids in units of the
mean interparticle distance d��−1, which is basically
the natural length scale of the system �17�, and �

���
�0

4	 �
ef f
2 B2 /d3 is the mean interaction energy or interpar-

ticle strength normalized with the thermal energy �−1�kBT,
with kB Boltzmann’s constant and T the temperature, B the
applied magnetic field, and 
ef f the effective magnetic sus-
ceptibility of the particles. Therefore, a variation in � can be
related with a change in B, T, or �, the latter one being the
particle number density.

We should point out that in contrast with charged colloids,
where the potential is assumed to have a Yukawa-like form
with effective parameters like the effective charge and Debye
screening length �14� �which can be varied accordingly to the
specific particular conditions�, the interaction potential be-
tween superparamagnetic colloids depends only on the pa-
rameter �. Therefore, the parameter space is drastically re-
duced, thus facilitating a universal description of the system
properties. Moreover, from an experimental point of view,
the associated uncertainties in the determination of the pa-
rameters in the case of charged colloids are larger than those
used to determine � �17�. Then, superparamagnetic colloids
are excellent model systems for investigating soft matter.

B. Simulation techniques

To obtain information of the suspension structure, we cal-
culate the pair distribution function g�x� and the static struc-

ture factor S�qx�. The diffusive behavior is obtained from the
mean-square displacement �MSD� W�t�. g�x� is the probabil-
ity of observing a particle at a distance x from a given par-
ticle, and it is computed by averaging over equilibrium con-
figurations through the relation �19�

g�x� =
1

N�
��

i=1

N−1

�
j�1

N

��x − xij�	 , �2�

where the angular brackets 
¯� denote a statistical �temporal
or ensemble� average and N is the number of particles. S�qx�
characterizes the variations in the local density as a result of
the particle interactions and the coupling with the external
field. Such a variations are quantified by the spatial fre-
quency q�2	 /
, where 
 is the corresponding wavelength.
Then, the static structure factor is simulated by using the
alternative relation �19�

S�qx� = N−1���
i=1

N

cos�qxi
· xi�
2

+ ��
i=1

N

sin�qxi
· xi�
2	 ,

�3�

where qx is the magnitude of the wave vector. The MSD is
computed by using the expression

W�t� = 
�x�t�2� = N−1�
i=1

N


�xi�t� − xi�0��2� . �4�

To simulate the structural and dynamic properties given by
Eqs. �2�–�4� we use the so-called Brownian dynamics �BD�
simulation method without hydrodynamic interactions. This
method is based on Ermak’s algorithm �20,21�

xi�t + �t� = xi�t� + �D0Fi�t��t + xi
r�t� , �5�

where xi�t� denotes the position of particle i at time t, Fi�t� is
the total force acting on it due to its interaction with the other
particles and the substrate, D0 is the free-particle diffusion
coefficient, xi

r�t� is a random displacement sampled from a
Gaussian distribution with zero mean and width 
xi

r�t�2�
=2D0�t, and �t is the time step.

In our simulations we move N particles �N varies between
900 and 1225 particles� of diameter � according to Ermak’s
algorithm in a line of length L /d=N; N is properly adjusted
to satisfy the continuity of the substrate on each border of the
line. Periodic boundary conditions are considered only in the
x direction; movement in any other direction is not allowed.
Since the interparticle interaction is of long range and
strongly repulsive, particles cannot feel their corresponding
hard core, as we will see further below; however, its value is
��0.4077d �17�. The time step used in the BD simulations
is �t=2�10−4��2D0�−1. The structure is corroborated by
standard Monte Carlo �MC� computer simulations �21�. A
typical MC run consists of 1�106 steps to reach thermal
equilibrium and 5�106 steps to perform the statistics. The
maximum time reached in the BD simulations is tmax
=120��2D0�−1—i.e., 6�105 time steps. During our simula-
tions the averages are taken over at least ten different inde-
pendent stochastic realizations to reduce the statistics uncer-
tainties and the substrate strength was initially chosen to be
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zero and gradually increased in steps of �V=0.1kBT to allow
particle fluctuations across the substrate barriers until they
reach the desired substrate strength. Nevertheless, in each
step, 7�104 time steps are then allowed to reach properly
the thermal equilibrium during the intermediate steady states.
Furthermore, energy corrections, due to the long-range na-
ture of the interparticle potential �1�, are not explicitly con-
sidered in our calculations. One should recall that energy
corrections are only needed when the exponent in power-
law-like potentials is smaller than the system dimension �21�,
which is not the case in the present work. In addition, energy
corrections are not needed if the length of the simulation box
is sufficiently large to guarantee that the potential is, from
numerical point of view, zero at distances comparable to L /2
�in our case it is around �u�L /2��10−4�. In addition, we
carried out an extensive analysis of the influence of the sys-
tem size. We found that our results are independent of N
when N�600 �data not shown�.

III. SUPERPARAMAGNETIC COLLOIDS IN A FREE
SINGLE FILE

The structure and dynamics of paramagnetic colloids can
be analyzed by varying the interaction strength � while keep-
ing constant the particle number density. As we already men-
tioned above, this is equivalent to changing the latter one
because an increase in � results in an increase of collision
rates between particles �8�.

Figures 1�a� and 1�b� show the pair distribution function
g�x� for different values of �. One immediately observes that
the distribution of particles along the file behaves similar to
that already well known in open systems �2D or 3D�. In
addition, for moderate strengths �Fig. 1�a��, g�x� shows a
typical fluidlike order; i.e., it decays to its corresponding
ideal-gas value, g�x��1, after a few mean interparticle dis-
tances. However, at higher strengths �Fig. 1�b��, the system
becomes more structured and highly correlated at longer dis-
tances. In both cases, the characteristic length scale is basi-
cally determined by the mean interparticle distance d=�−1;
the peaks are successively separated by the distance d. This
fact is clearly corroborated by the structure factor S�qx�
shown in Fig. 1�c�, where the main peak is located at the
position qxd�2	. Our results are corroborated with Monte
Carlo simulations �solid lines� which basically reproduce the
same structural information.

To clarify the long-ranged correlation between colloids
for high interaction strengths, we also analyze the envelope
of the g�x�. It is well known that an envelope which decays
algebraically can be associated with high ordering in contrast
with the exponential decay which is directly related with a
fluidlike structure. Figure 2 depicts some pair correlation
functions already shown in Fig. 1 together with their corre-
sponding envelope. This figure is plotted logarithmically;
this representation is suitable for studying the decay of the
pair correlation function. We observe that for small �, the
envelope can be best described by a single exponential �see
solid lines for ��4�. This clearly demonstrates the short-
ranged nature of correlation between particles. However, for
��4 the envelope is best fitted by using an algebraic fit.

This behavior evidences the long-ranged ordering of the col-
loids along of the channel. Such interesting transformation
from the liquid-state microstructure to quasicrystal �periodic�
microstructure will be studied in detail elsewhere.

Diffusion properties, characterized by the reduced mean-
square displacement W��t��W�t� /d2 and the reduced single-
file mobility factor F��F� /D0

1/2, are shown in Figs. 3�a� and
3�b�, respectively. They are in qualitative agreement with
previous experimental results �8,11,12,22�. Particularly, we
observe that at sufficiently short times, t�10−3��2D0�−1,
where the displacement of individuals particles is governed
by the interaction with the solvent, the diffusion is normal—
i.e., W�t�� t. By increasing the time, the presence of adjacent
particles becomes more important until eventually a cross-
over occurs at times t�10−1��2D0�−1 in which the dyna-
mics becomes subdiffusive with an anomalous exponent �

FIG. 1. �Color online� Pair distribution function g�x� for �a�
moderate and �b� high interaction strengths �. �c� Static structure
factor S�qx� �symbols� obtained from BD simulations. The structure
is corroborated by means of MC simulations �solid lines�.
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=1 /2—i.e., W�t�� t1/2. The crossover time from normal dif-
fusion to subdiffusion occurs at earlier times as � is in-
creased. This behavior is due to the fact that by increasing
the interparticle interaction strength the direct particle-
particle interaction becomes more important at shorter times
and the energetic barrier imposed by the other neighbor col-
loidal particles reduces the particle acceleration �8,14�.
Moreover, the particle mobility decays with increasing � in
an exponential-like form �Fig. 3�b�� in agreement with ex-
periments �5,8,11,12�, theory �5� and simulations �13,14�.

The results depicted in Figs. 1 and 3 are very similar to
those reported previously in Figs. 1 and 2, respectively, of

Ref. �14�. In general, both systems show a transition from
fluidlike order to long-ranged ordering and a linear diffusion
at short times �basically in the same interval of time�. Fur-
thermore, at longtimes, the non-Fickian behavior is always
observed no matter the nature of the interaction potential.
However, the transport coefficient or mobility factor is
slightly smaller for the superparamagnetic colloids than in
the charged case; this leads to a slower particle diffusion.
Then, the resemblances between both systems confirm that a
variation in � �which can be due to a change in the tempera-
ture�, at fixed density, produces the same effect in both static
and dynamic properties that a variation in the particle con-
centration keeping constant the interaction potential.

IV. SUPERPARAMAGNETIC COLLOIDS IN PERIODIC
SUBSTRATES

Systems which possess two or more competing length
scales are very common in nature. The competition between
different length scales leads to a large variety of structures
and commensurate-incommensurate �C-I� phase transitions.
These systems have received intense attention during the last
few years �see, e.g., Refs. �7,23,24��.

The simplest model system with competing length scales
was proposed by Frenkel-Kontorova �FK�. This model has
been extensively discussed, and we here only mention its
main features, which are necessary for the basis of our dis-
cussion. The FK model is a one-dimensional model of a
system of particles treated as a harmonic chain with equilib-
rium lattice spacing a adsorbed on a periodic substrate with a
periodic lattice of period b. It has been used successfully for
the description of a vast number of different condensed mat-
ter systems and phenomena. It provides a simple and realistic
description of C-I transitions when thermal fluctuations are
unimportant as they are basically at zero temperature
�15,16�; i.e., the system energy is only characterized by the
potential energy. Then, by analyzing the energetic landscape
of the system one can understand the origin of commensu-
rable and incommensurable phases described in the FK
model �7,23,24�.

The FK model shows commensurate structures with the
average spacing between adsorbate particle a rational mul-
tiple of b; this means ã= �p /q�b with p and q relatively prime
integers consisting of periodically repeated unit cells of
length pb containing q adsorbate atoms for every p substrate
minima. For an interesting discussion of the FK phase dia-
gram, see Ref. �16�.

Interestingly, the FK model and our model system possess
similarites. It is therefore expected to find structural proper-
ties similar to those already found in the FK model �16�.
However, we should emphasize that, on the one hand, we are
considering a system where the adsorbed particles interact
continuously through the potential given by Eq. �1�; each
particle interacts with its nearest neighbors as well as with
further neighbors due to the long-ranged nature of the inter-
action potential; i.e., we consider explicitly anharmmonic in-
teractions and, on the other hand, thermal fluctuations will
play an important role, as we will see further below, and then
cannot be completely neglected. Then, the energy potential
can be written as

FIG. 2. Pair distribution function g�x�. The curves are displaced
in a vertical direction for clarity. From bottom to top the particle
strengths are �=0.66, 1.1, and 4.67. The envelopes are indicated by
solid lines.

FIG. 3. �Color online� �a� Reduced mean-square displacement
W��t��W�t� /d2 for different particle interaction strengths �. �b�
Reduced mobility factor F��F� /D0

1/2 as a function of � extracted
from the fit to the simulation data according to relation W�t�
=2F�t. The solid line is just a guide for the eye.
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U = �
i�j

u�xij� + �
i

Vext�xi;aL� , �6�

where the first term takes into account the pair interaction
which is given by �1�, while the second term describes the
particle interaction with the periodic substrate,

Vext�x;aL� = V0 sin�2	x

aL

 , �7�

V0 being the substrate strength, x the particle position, and aL
the substrate periodicity.

A. Structure

In our previous work �14�, we demonstrated that a one-
dimensional colloidal system with anharmonic interactions
and subject to periodic external fields provides new struc-
tural phases. Nonetheless, different interparticle potentials, in
general, lead to new phases. Particularly, Ref. �14� uses a
treatment with short-range interactions �Yukawa-like�. In this
work, we deal with long-range interactions with a dipolelike
form.

Before to discuss our results, it is convenient to remark
that in the absence of a substrate �V0=0� we found that col-
loids form a highly ordered fluid with a characteristic length
scale given by the mean particle distance d=�−1. From d and
the substrate periodicity aL, we define the so-called commen-
surability ratio p�d /aL �14�. This factor allows us to char-
acterize the resulting type of commensurate, or incommen-
surate, structure. We should notice, however, that a variation
in p will be related with a change in aL.

Figure 4�a� shows the correlation function �symbols� for
the case aL=� and ��4.08, which corresponds to p�2.45,
for three different substrate strengths V0=1.6kBT, 2.8kBT,
and 4.4kBT. According with the FK model, this system is
close to a commensurable phase with ã= 5

2aL. This means
that we expect a state with repeated periodic unit cells of
length 5aL that contains two colloids every five substrate
minima. In Fig. 4�a� we also plot the positions of the peaks
�solid lines� corresponding to the case V0=0 �multiples of
d�2.4��. One clearly observes that the substrate induces
changes in the local structure of the suspension, in which the
maxima position is shifted with respect to the case without
substrate. This implies that, on the one hand, the potential
will always modulate the chain even in the case where it is
not strong enough to force the commensurability and, on the
other hand, substrate-induced correlations at separations
smaller than d are due to there being almost three substrate
periods for each mean separation. Both effects become stron-
ger with the substrate strength; as V0 increases the tendency
of adsorbed particles to seek potential minima to also in-
crease. Furthermore, the competition between colloid-colloid
and colloid-substrate interactions leads to a distortion of the
neighbors layer which is not present in the substrate-free
case. This deformation affects the distribution of colloids
along the channel, thus leading to a rich variety of adsorbate
phases. In consequence, one can notice that the nearest
neighbor is closer to any central particle than in the case
without substrate whereas the second neighbor becomes

closer to the first one, but it is further from the third one.
Such interesting phenomena can better be visualized in the
static structure factor S�qx�. The latter one gives relevant
information about the length scales of the system by looking
at the position of its peaks. In Fig. 4�b� we show the S�qx� for
the systems of Fig. 4�a�. One can distinguish three peculiar
peaks at the positions qx��2.6, 2	, and 8.8. These peak
positions are related with the position of the first peak of the
g�x�, the substrate periodicity, and the separation between the
first and second neighbors, respectively. Then, the peaks at
the positions qx��2.6 and qx��8.8 reveal that two ad-
sorbed particles can be further and closer, respectively, than
the distance between two consecutive substrate minima.

FIG. 4. �Color online� �a� Pair distribution functions and �b�
static structure factors for the case p=2.45 with �=4.08 for three
different substrate strengths. The perpendicular solid lines in �a�
represent the position of each maximum for the case V0=0 and the
curves are shifted for clarity. �c� Average configuration of the par-
ticles along the channels. The sinusoidal term of Eq. �7� is plotted
�dashed lines� on each channel to understand the particle ordering
respect to the substrate minima.
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These kinds of particle distributions, also observed in the FK
model �see, e.g., �16�� and recently in charged colloidal sys-
tems �14�, are usually called discommensurations because
they break the commensurate registry of the adsorbate and
substrate lattices. However, the height of the peak at qx�
=2	 indicates that there are regions on the substrate where
the particles are located on the substrate minima. Figure 4�c�
shows the snapshots of the average particle positions. Note
that a commensurable phase is found for higher values of V0
��10kBT�. However, the C phase that we observe is slightly
different than that predicted by the FK model. In this case,
we find a chaotic phase that is “pinned” to the potential. This
means that the colloids are distributed in a random way
among the substrate minima. This chaotic phase is similar to
the commensurable phase, although the average period ã is,
in general, incommensurate with the substrate period aL. For
a more comprehensive discussion about chaotic phases, see,
for instance, Ref. �25�.

We have also chosen the case aL=2.4�. The purpose of
this choice is twofold. First, it allows us to elucidate the
features when p=1, comparing its properties with the case of
harmonic interactions—i.e., FK model; in this case, the FK
model predicts a commensurate structure with ã=aL. Sec-
ond, it is related with the diffusion in the ground state p=1
and allows one to compare the dynamical properties with the
cases p�1 and p�1, as we discuss below. Then, Fig. 5�a�
shows the distribution function for this case; the values of V0
are the same as in the previous case. We observe that the
peak positions match with the substrate minima and basically
they are located at the same position as in the case without
substrate no matter the strength of V0. This is easy to under-
stand if one recalls that d�aL, so that the natural length
scale of particles matches with the substrate periodicity. For
high values of V0 it is expected that one adsorbate colloid sits
on each substrate minimum. This scenario can be better ap-
preciated in the static structure factor S�qx� �see Fig. 5�b��,
which shows three main peaks at very-well-defined posi-
tions. The main peak is at the position qx��2.6, and the
other peak positions are multiples of the main peak position,
so they are at qx��5.2 and qx��7.8. This confirms that
each particle is absorbed on every potential minimum. To
visualize this picture, Fig. 5�c� shows the snapshots of the
average particle position. For V0=8kBT the commensurate
structure can be nicely observed.

We now discuss the case p�1. This case is depicted in
Fig. 6 for aL=3� or p�0.82. Immediately, one observes that
g�x� acquires a less pronounced structure as V0 increases; the
height of the maxima and minima decrease. This result, in
contrast with the previous cases, suggests a kind of loss of
correlation among the particles and a possible scenario where
particles become depinned from the sinusoidal substrate—
i.e., a depinning transition. This behavior is confirmed by the
structure factor in Fig. 6�b�. It shows practically one peak at
the position qx��2.69 which is related to the mean interpar-
ticle separation, confirming then that the local order at short
and large separations has notably changed. In addition, by
looking at the height of the S�qx� at the position qx�=2	 /3
�and integer multiples of it� one can appreciate that for V0
�2.8kBT there are no particles on the substrate minima.
However, for higher values of V0 some particles begin to be

located around the potential minima, but no commensurable
phase is observed. This is another piece of evidence of the
depinning effect; it is also observed in Fig. 6�c� where it is
shown that the particles are distributed in a random way
along the substrate and only a few particles sit on the poten-
tial minima. Nevertheless, we also find that at V0�10kBT the
system is close to a commensurable phase and the pinning
transition is recovered for V0�15kBT �data not shown�
where a commensurable phase with p=9 /11 is observed—
i.e., 9 colloids every 11 substrate minima. We should point
out that the loss of correlation was also observed in the case
of short-range interactions �14�; nonetheless, the distribution
of particles along the channel in such case is completely

FIG. 5. �Color online� �a� Pair distribution functions and �b�
static structure factors for the case p=1 with �=4.08 for three dif-
ferent substrate strengths. The perpendicular solid lines in �a� rep-
resent the position of each maximum for the case V0=0 and the
curves are shifted for clarity. �c� Average configuration of the par-
ticles along the channels. The sinusoidal term of Eq. �7� is plotted
�dashed lines� on each channel.
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different �see Ref. �14��. We come back to the discussion of
the depinning transition below.

So far, we have analyzed the variation of the structure by
changing the substrate parameters while keeping � constant.
We clearly appreciate a similar behavior already discussed in
our previous work with charged colloids �14�, where the
pinning-depinnig transition is also addressed and observed.
This scenario indicates that the structure in one-dimensional
systems with purely repulsive interactions and subject to ex-
ternal periodic potentials exhibits a universal behavior. This
important characteristic gives us a unique opportunity for the
structural manipulation by only changing the substrate pa-
rameters.

To illustrate the effects due to the variation in �, we now
fix the substrate periodicity aL=5.5 �m �2� and substrate
strength V0=3.6kBT. Figure 7�a� shows the distribution func-
tions for several interaction strengths. We find that for small
values of � ��1.1� the particles are sit on each substrate
minimum because the pair-potential contribution is smaller
than V0. In fact, for ��0.23 each g�x� collapses in the same
curve �data not shown�. In contrast, for higher interaction
strengths, the pair interaction between particles becomes as
relevant as the colloid-substrate potential and therefore the
competition between both interactions lead to several incom-
mensurable phases. Furthermore, the structure factor in Fig.
7�b� also indicates, as in the previous cases, that by increas-
ing � the distortion in the neighbors layer becomes higher;
i.e., colloids are nonuniformly distributed along the substrate
and the particle ordering cannot be described by a unique
length scale and, on average, two colloids are separated by
distances larger than the distance between two consecutive
substrate minima �see the two peaks before the position
qxaL=2	�. This structural behavior is qualitatively similar to
that reported in �14�, although the latter one is due to a varia-
tion in the particle concentration.

B. Dynamics

In general, particle transport or diffusion in one-
dimensional channels under periodic substrates has been re-
ported to be slower than that in the homogenous case �sub-
strate free�, but its magnitude depends on the energetic

FIG. 6. �Color online� �a� Pair distribution functions and �b�
static structure factors for the case p=0.82 with �=4.08 for three
different substrate strengths. The perpendicular solid lines in �a�
represent the position of each maximum for the case V0=0 and the
curves are shifted for clarity. �c� Average configuration of the par-
ticles along the channels. The sinusoidal term of Eq. �7� is plotted
�dashed lines� on each channel.

FIG. 7. �a� Pair distribution functions and �b� static structure
factors for different values of � with aL=5.5 �m and V0=3.6kBT.
The curves are shifted for clarity.
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balance between the particle-particle and particle-substrate
interactions �13,14�. In particular, we now extend our previ-
ous study �14� to the case with long-range interparticle po-
tentials and stronger substrate strengths.

The reduced mean-square displacements W��t� for p�1
are shown in Figs. 8�a� and 8�b�. We appreciate that at short
times �t�10−3 /�2D0� normal diffusion occurs due to the par-
ticles and do not feel the direct interactions with the other
colloids—i.e., W�t�� t. Nonetheless, at long times the dy-
namics process becomes subdiffusive and is described by the
non-Fickian relation W�t�� t1/2. For small V0, the transition
from normal diffusion to subdiffusion occurs continuously,
however, for high V0 the diffusion of particles is severely
affected by the substrate; at intermediate times particles dif-
fuse slower than at short and long times. The reduction in the
particle diffusion is due to the energetic barrier imposed by
the substrate. This causes the particles diffusion �or oscillate�
around each substrate minimum for a long period of time
before reaching diffusive collective motion. Therefore, the
time required to surmount the energetic barrier increases
with the substrate strength. In particular, for V0=8kBT, we
observe that in the interval 10−3� t�2D0�101 the reduced
MSD exhibits a plateau which indicates that the system is
probably trapped in a glassylike state; however, at longer
times t�2D0�101, the MSD increases again, indicating that
the non-Fickian behavior can probably be reached at much
longer times. For larger substrate strengths, we have also
found pinned or locked states in which particles cannot es-
cape from the substrate minimum and thus the diffusion or
mobility goes quickly to zero �data not shown�. Additionally,
the mobility factor decreases when V0 increases �see open
circles in Fig. 10�.

The reduced MSDs for p=1 are quantitatively similar to
the case previously discussed �data not shown�; both show a

comparable behavior at all time regimes. However, as illus-
trated in Fig. 10 �open squares�, the mobility factor is, in
general, smaller. This is due to the system being in a com-
mensurable state and hence particles quickly tend to seek the
adjoining potential minimum; they oscillate around it for a
long time. Interestingly, we have shown that for p�1 the
mobility factor decreases with V0 no matter the kind of in-
terparticle potential �14�. Nonetheless, the diffusion of super-
paramgnetic colloids is slower than the case of charged col-
loids �see also Fig. 9 in �14��.

The diffusive process for p�1 is depicted in Fig. 9. One
observes that for any substrate strength W�t� behaves almost
as a free single file �V0=0�, although the �small� differences
can be noticed at long times. These differences are related
with the nonmonotonic variation of the reduced mobility fac-
tor shown in Fig. 10 �open triangles�. Surprisingly, at mod-
erate substrate strengths the mobility factor F increases and
takes values larger than the case without substrate until reach
a maximum at V0�8kBT. This dynamic effect implies a non-
monotonic behavior of the particle transport and, clearly, it is
a piece of evidence of the depinning of the particles from the
substrate and is due to the so-called noise-assisted effect in
which thermal fluctuations act cooperatively leading to a
higher mobility. This depinning transition can be interpreted
as follows. We should notice that for p�1 there are more
particles than substrate minima which diffuse almost freely.
Then, those free particles keep dynamical coupling along the
channel with the other particles which, in principle, can oc-
cupy a substrate minimum. Nevertheless, this dynamical
coupling and the system noise �thermal fluctuations� cooper-
ate to give a dynamical mode which leads to the depinning
effect without affecting the subdiffusive process at long
times. Additionally, this phenomenon, already seen in the

FIG. 8. �Color online� Reduced MSDs for different substrate
strengths with parameters p=2.45 and �=4.08.

FIG. 9. �Color online� Reduced MSDs for different substrate
strengths with parameters p=0.82 and �=4.08.
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diffusion of a single Brownian particle drifting down a tilted
washboard potential �26� and in the subdiffusion of charged
colloids on periodic substrates �14�, is also responsible for
the loss of correlations of particles along the channel already
discussed in Fig. 6. In the absence of thermal noise—i.e., in
FK-like models—such an effect cannot take place. For V0
�8kBT, the mobility factor decreases again, indicating that
the substrate eventually starts to dominate the diffusive pro-
cess of the particles. This means that for high V0 the dynami-
cal cooperative effect is not so strong to remove particles
which are located on some of the substrate minima, then
making more difficult the particle transport—i.e., leading to
a slower diffusion.

To understand completely the diffusion properties of para-
magnetic colloids on narrow corrugated substrates, we must
take into account variations in �. In Fig. 11�a�, the MSDs for
the system described in Fig. 7 are shown. Interestingly, one
can observe that at short and intermediate times the behavior
is basically independent of �. In addition, the time needed to
reach the diffusive collective motion seems to be the same no
matter the value of the interaction strength and the
asymptotic behavior at long-times scales according to the
non-Fickian law W�t�� t1/2. Nonetheless, the corresponding
mobility factor decreases monotonically with � as can be
noticed in Fig. 11�b�. Furthermore, one can observe a similar
exponential-like decay as in the homogeneous case, but we
should note that the magnitude of the mobility is dramati-
cally less. This reduction is a clear indication of the amount
in which the periodic substrate can affect the transport of
particles along the substrate.

Finally, we should remark that the diffusion properties of
superparamagnetic colloids under one-dimensional periodic
potentials share similarites with those of the charged col-
loids. In both cases, we notice that the diffusion decreases if
p�1 and increases when p�1 and V0�10kBT; this result is
independent of the kind of interaction potential between col-
loids. Thus, our simulations predict that the diffusion mecha-
nisms can be also manipulated by only changing the sub-
strate properties accordingly.

V. CONCLUSIONS

Colloids play a prominent role as model systems that al-
low highlighting the general principles and mechanisms of

phase transitions in systems with attractive and repulsive in-
teractions. In particular, we have investigated both the struc-
ture and dynamics of superparamagnetic colloidal particles
in narrow channels and subject to one-dimensional periodic
potentials.

We observed that commensurable and incommensurable
phases appear due to the competition between both the
particle-particle and particle-substrate interactions and their
corresponding length scales. We found that there is a defor-
mation of the neighbors’ layer which affects the distribution
of colloids along the channel.

We have also shown that the depinning can directly be
quantified through a loss of correlations in the structure or
the enhancement of the transport coefficient. This effect
seems to be purely cooperative due to the coupling between
the thermal noise and the dynamical modes of the free par-
ticles diffusing on the substrate. Moreover, our results have
allowed extending the understanding of the single-file diffu-
sion in systems composed of interacting Brownian particles
under one-dimensional modulated substrates, thus validating
the non-Fickian law for systems of narrow corrugated sub-
strates. These results can be corroborated in experiments
with light forces. Experiments in such a direction can also
corroborate the file depinning threshold reported here.

Here, we confirmed that both structural and dynamics
properties of one-dimensional systems subject to periodic
substrates possess a universal behavior when particles inter-
act repulsively no matter the origin and/or range of the inter-
action. This information can be used to manipulate the sys-
tem properties using external fields.

FIG. 10. Reduced mobility factor F� as a function of the sub-
strate strength V0 for different substrate periodicities aL=�, 2.4�,
and 3� with �=4.08. The line is a guide for the eye.

FIG. 11. �Color online� �a� Reduced mean-square displacement
W��t� for the case aL=5.5 �m with V0=3.6kBT for different inter-
action strengths �. �b� Reduced mobility factor F�. The line is a
guide for the eye.
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